Numerical Prediction of Radiation Measurements Taken in the X2 Facility for Mars and Titan Gas Mixtures
نویسندگان
چکیده
Thermochemical relaxation behind a normal shock in Mars and Titan gas mixtures is simulated using a CFD solver, DPLR, for a hemisphere of 1 m radius; the thermochemical relaxation along the stagnation streamline is considered equivalent to the flow behind a normal shock. Flow simulations are performed for a Titan gas mixture (98% N2, 2% CH4 by volume) for shock speeds of 5.7 and 7.6 km/s and pressures ranging from 20 to 1000 Pa, and a Mars gas mixture (96% CO2, and 4% N2 by volume) for a shock speed of 8.6 km/s and freestream pressure of 13 Pa. For each case, the temperatures and number densities of chemical species obtained from the CFD flow predictions are used as an input to a line-by-line radiation code, NEQAIR. The NEQAIR code is then used to compute the spatial distribution of volumetric radiance starting from the shock front to the point where thermochemical equilibrium is nominally established. Computations of volumetric spectral radiance assume Boltzmann distributions over radiatively linked electronic states of atoms and molecules. The results of these simulations are compared against experimental data acquired in the X2 facility at the University of Queensland, Australia. The experimental measurements were taken over a spectral range of 310-450 nm where the dominant contributor to radiation is the CN violet band system. In almost all cases, the present approach of computing the spatial variation of post-shock volumetric radiance by applying NEQAIR along a stagnation line computed using a high-fidelity flow solver with good spatial resolution of the relaxation zone is shown to replicate trends in measured relaxation of radiance for both Mars and Titan gas mixtures.
منابع مشابه
Influence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor
A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...
متن کاملGlobal energy budgets and ‘Trenberth diagrams’ for the climates of terrestrial and gas giant planets
Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. The climate on Earth is generally determined by the amount and distribution of incoming solar radiation, which must be balanced in equilibrium by the emiss...
متن کاملA Correlation for the Prediction of the Adiabatic Joule-Thomson Coefficient of Pure Gases and Gas Mixtures
A correlation based on the general form of cubic equations of state has been derived. This equation provides a convenient mathematical form of the Joule-Thomson coefficient in terms of the state variable V and T. The Joule-Thomson coefficient calculated by this correlation has been compared with experimental data. It has been shown that the Redilich-Kwang equation of state is a suitable equ...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملPredicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)
Rutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep...
متن کامل